Abstract |
The current project represents Phase 3 of a four-phase endeavor at Kent State University at Tuscarawas. Its general objectives are to design, build and test an UAS consisting of an octocopter as UAV (Figure 1) for data acquisition and capable of operating under manual control, stabilized control and automated control (autopilot). The system has video acquisition and recording subsystem consisting of an SJ 4000 action camera mounted on a 3–axes gimbal for image stabilization (Figure 2) and first person view (FPV) subsystem consisting of an HD camera, 5.8 GHz video transmitter and receiver modules and on-screen display (OSD) for transmitting telemetry data (Figure 3).
|
Modified Abstract |
Unmanned Aircraft Systems (UASs) are systems comprising of an unmanned aircraft vehicle (UAV), its payloads, the control station, its support subsystem and its communication subsystem [1]. UASs can be used for cargo / package delivery or as sensor platforms for data acquisition [2] such as aerial mapping, aerial surveying, precision agriculture (crop health or crop damage assessment), natural resource management (wildlife census, impact of human activities on wildlife), inspection of industrial and civil infrastructure, aerial filming and photography, news reporting or intelligence, surveillance, reconnaissance and emergency response.
|